Foundation for Success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD

KEY

1	2	3	4	5	6	7	8	9	10
C	A	D	D	A	A	A	A	B	C
11	12	13	14	15	16	17	18	19	20
D	B	A	D	A	A	A	A	A	D
21	22	23	24	25	26	27	28	29	30
C	D	C	D	C	C	B	D	B	D
31	32	33	34	35	36	37	38	39	40
$\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$	B, C	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	B, C	B, C	C	C	C	B	B
41	42	43	44	45	46	47	48	49	50
A	D	D	D	B	C	C	D	B	D

EXPLANATIONS

MATHEMATICS - 1 (MCQ)

1. (C) $2^{4\left(x^{2}+3 x-1\right)}=2^{3\left(x^{2}+3 x+2\right)}$
$4 x^{2}+12 x-4=3 x^{2}+9 x+6$
$\Rightarrow \mathrm{x}^{2}+3 \mathrm{x}-10=0$
or $(x+5)(x-2)=0$
$\therefore \mathrm{x}=-5,2$
Sum of all values of " x " $=-5+2=-3$
2. (A) $A D=A O+O D=\frac{A E}{2}+\frac{A O}{2}$
$=14 \mathrm{~cm}+7 \mathrm{~cm}$
$=21 \mathrm{~cm}$
$O C=O D=14 \mathrm{~cm}$
Area of the shaded region = Area of sector

Area of the parallelogram = Area of sec-
tor
AOC - Area of $\triangle C O D$
$=21 \times 14 \mathrm{~cm}^{2}-90^{\circ} \times \frac{22}{7} \times 14 \times 14 \mathrm{~cm}^{2}$
$-\frac{1}{2} \times 14 \times 7 \mathrm{~cm}^{2}$
$=294 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}-49 \mathrm{~cm}^{2}=91 \mathrm{~cm}^{2}$
3. (D) Given points are $A(-a,-a), B(a,-a), C(a, a)$ and $D(-a, a)$

Hence, it is clear that the given points form a square and the origin lies at the point where the diagonals of the square intersect.
4. (D) Given that the radii of three solid glass balls are ' r ' cm, 6 cm and 8 cm , sum of the volumes of the three glass balls
$=\frac{4}{3} \pi \mathrm{r}^{3}+\frac{4}{3} \pi(6)^{3}+\frac{4}{3} \pi(8)^{3}$
$=\frac{4}{3} \pi\left(r^{3}+6^{3}+8^{3}\right) \mathrm{cm}^{3}$
The volume of the solid sphere of radius 9 cm
$=\frac{4}{3} \pi\left(9^{3}\right)=243 \times 4 \pi$
$\therefore 243 \times 4 \pi=\frac{4}{3} \pi\left(r^{3}+728\right)$
$\Rightarrow 729=r^{3}+728$
$\Rightarrow r^{3}=729-728=1$
$\Rightarrow r=1$
Hence, $r=1 \mathrm{~cm}$
5. (A) Semicircular arc $B C=6 \pi$
\Rightarrow Circumference of circle with diameter $B C=2 \times 6 \pi=12 \pi$
\Rightarrow Diameter $=12=$ Side $B C$ of rectangle ABCD.

Similarly, length of semicircular arc CD = 4π
\Rightarrow Its diameter $=8=$ side $C D$ of rectangle ABCD

Therefore, area of rectangle
$A B C D=B C \times C D=12 \times 8=96$ Sq. units
6. (A) Let $p(x)=x^{4}-a^{2}+3 x-a$.

Since $x+a$, i.e. $x-(-a)$ is a factor of $p(x)$, we must have $p(-a)=0$
$\Rightarrow(-a)^{4}-a^{2}(-a)^{2}+3(-a)-a=0$
$\Rightarrow a^{4}-a^{4}-3 a-a=0$
$\Rightarrow-4 a=0$
$\Rightarrow \mathrm{a}=0$
7. (A) Let the two consecutive even numbers be ' n ' and ($n+2$).

Then, according to the problem,
$n^{2}+(n+2)^{2}=340$
$\Rightarrow n^{2}+n^{2}+4 n+4=340$
$\Rightarrow 2 n^{2}+4 n+4=340$
$\Rightarrow 2 \mathrm{n}^{2}+4 \mathrm{n}-336=0$
$\Rightarrow \mathrm{n}^{2}+2 \mathrm{n}-168=0$
$\Rightarrow \mathrm{n}^{2}+14 \mathrm{n}-12 \mathrm{n}-168=0$
$\Rightarrow \mathrm{n}(\mathrm{n}+14)-12(\mathrm{n}+14)=0$
$\Rightarrow(\mathrm{n}+14)(\mathrm{n}-12)=0$
$\Rightarrow \mathrm{n}=-14$ or 12
\therefore The required numbers are 12 and 14
Their sum $=12+14=26$.
8. (A) Total cost for painting
$=[2 h(/+b)] \times$ ₹ 4
$=12 \times 15 \times 4$
$=₹ 720$
9. (B) Given $\left(x^{2}-3 x+2\right)$ is a factor of
$p(x)=x^{4}-p x^{2}+q$
$x^{2}-3 x+2=(x-1)(x-2)$
$(x-1)$ is a factor of $p(x)$
$1-p+q=0$
$p-q=1$
$p=q+1$
$(x-2)$ is also a factor of $p(x)$
$2^{4}-p(2)^{2}+q=0$
$16-4 p+q=0$
$16-4(q+1)+q=0$
$16-4 q-4+q=0$
$12-3 q=0$
$12=3 q \Rightarrow q=4$
$p=q+1=4+1=5$
10. (C) \quad LHS $=\sqrt[3]{(\sqrt[3]{x})^{3}+3(\sqrt[3]{x})^{2} 3 y+3 \sqrt[3]{x} \sqrt[3]{y}+(\sqrt[3]{y})^{3}}$

$$
\begin{aligned}
& =\sqrt[3]{(\sqrt[3]{x}+\sqrt[3]{y})^{3}} \\
& =(\sqrt[3]{x}+\sqrt[3]{y})^{3 \times \frac{1}{3}} \\
& =\sqrt[3]{x}+\sqrt[3]{y}
\end{aligned}
$$

11. (D)

' O ' is equidistant from A, B, C and D
$\therefore \quad$ ' O ' is the centre of the circle
$\therefore \quad \angle B C D$
$=\angle B A D=70^{\circ}$
$[\therefore \quad$ Angle in the semicircle] (OR)
' O ' is circumcentre of $\triangle A B C$
$\angle B A D \& \angle B A C$ are angles in the same segment $\Rightarrow \angle B C D=\angle B A D=70^{\circ}$
Const:- External AO up to E (or)
In $\triangle A O B$, given $O A=O B$
$\Rightarrow \angle \mathrm{OBA}=\angle \mathrm{OAB}=x$
In $\triangle A O D$ given $O A=O D$
$\Rightarrow \angle \mathrm{ODA}=\angle \mathrm{OAD}=y$
$\therefore \angle \mathrm{BOE}=x+x=2 x$
$\angle \mathrm{DOE}=y+y=2 y$
$\therefore \angle \mathrm{BOD}=\angle \mathrm{BOE}+\angle \mathrm{DOE}$
$=2 x+2 y=2(x+y)=2 \times 70^{\circ}$
$=140^{\circ}$
$\therefore \angle \mathrm{DOC}=180^{\circ}-\angle \mathrm{BOD}=40^{\circ}$
In $\triangle C O D, O C=O D \Rightarrow \angle O D C=\angle O C D=z$
In $\triangle C O D, z+z+40^{\circ}=180^{\circ}$
$z=70^{\circ}$
$\therefore \angle \mathrm{BCD}=\mathrm{z}=70^{\circ}$
12. (B) Volume of shades solid
$=4 \times 6 \times 5-1 \times 2 \times 4=112$ units 3
13. (A) Mass $=V \times D=\pi(R+r)(R-r) h \times D$
$=\frac{22}{7}\left(\frac{4.5}{2}+2\right)\left(\frac{4.5}{2}-2\right) 77 \times 8 \mathrm{gm} / \mathrm{cc}$
$=2.057 \mathrm{~kg}$
14. (D) $\angle P Q R=90^{\circ}[\therefore$ Angle in a semi circle $]$
$\therefore \angle \mathrm{QPR}+\angle \mathrm{QRP}=90^{\circ}$
$\angle Q P R+30^{\circ}=90^{\circ}$
$\angle \mathrm{QPR}=60^{\circ}$
$\therefore \angle \mathrm{TPR}=100^{\circ}-60^{\circ}=40^{\circ}$
But $\angle \mathrm{TPR}+\angle x=180^{\circ}$
$40^{\circ}+x=18^{\circ}$
$x=140^{\circ}$
15. (A) $\operatorname{In} \triangle A B C, \angle B=90^{\circ}=A C^{2}=A B^{2}+B C^{2}$
$41^{2}=A B^{2}+40^{2}$
$A B=9$
Area of
$\triangle A B C=\frac{1}{2} \times A B \times B C$
$=\frac{1}{2} \times 9 \times 40 \mathrm{~cm}^{2}=180 \mathrm{~cm}^{2}$
In $\mathrm{DABC}, \angle \mathrm{ACD}=90^{\circ}$ is $=\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}$
$841^{2}=41^{2}+C B^{2}$
$C D=840$
Area of
$\triangle \mathrm{ACD}=\frac{1}{2} \times \mathrm{AC} \times \mathrm{CD}$
$=\frac{1}{2} \times 41 \mathrm{~cm} \times 840 \mathrm{~cm}$
$=17,220 \mathrm{~cm}^{2}$
Total area $=17,220 \mathrm{~cm}^{2}+180 \mathrm{~cm}^{2}$
$=17,400 \mathrm{~cm}^{2}$
16. (A) $(x-1)$ is a factor means sum of coefficient are zero.
17. (A) PXQY is a parallelogram
18. (A) In $\triangle A D C, \angle D=90^{\circ}$

$$
\begin{array}{ll}
\therefore \quad & \mathrm{BB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2} \\
& (15 \mathrm{~cm})^{2}=(9 \mathrm{~cm})^{2}+\mathrm{DB}^{2} \\
& 225 \mathrm{~cm}^{2}-81 \mathrm{~cm}^{2}=\mathrm{DB}^{2} \\
& \mathrm{DC}=\sqrt{144 \mathrm{~cm}^{2}}=12 \mathrm{~cm}
\end{array}
$$

19. (A)
20. (D) Given $4 \pi r^{2}=1018 \frac{2}{7} \mathrm{~cm}^{2}$
$4 \times \frac{22}{7} \times \mathrm{r}^{2}=\frac{7128}{7} \mathrm{~cm}^{2}$
$\therefore r^{2}=\frac{7128^{648^{222^{81}}}}{7} \mathrm{~cm}^{2} \times \frac{7}{227} \times \frac{1}{4_{1}}$
$r^{2}=(9 \mathrm{~cm})^{2}$
$r=9 \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{\not p} \times \frac{22}{7} \times \phi^{3} \times 9 \times 9 \mathrm{~cm}^{3}$
$=3054.85 \mathrm{~cm}^{3}$
$=3054.9 \mathrm{~cm}^{3}$
21. (C) $s=\frac{a+b+c}{2}=\frac{9 \mathrm{~cm}+40 \mathrm{~cm}+41 \mathrm{~cm}}{2}=\frac{90 \mathrm{~cm}}{2}=45 \mathrm{~cm}$

Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{45 \mathrm{~cm} \times 36 \mathrm{~cm} \times 5 \mathrm{~cm} \times 4 \mathrm{~cm}}$
$=\sqrt{9 \times 5 \times 9 \times 4 \times 5 \times 4 \mathrm{~cm}^{4}}$
$=9 \times 5 \times 4 \mathrm{~cm}^{2}=180 \mathrm{~cm}^{2}$
$\therefore \frac{1}{2} \times 9 \mathrm{~cm} \times \mathrm{h}=180 \mathrm{~cm}^{2}$
[\because Shortest side altitude is longest]
$\mathrm{h}=180 \mathrm{~cm}^{2} \times \frac{2}{9 \mathrm{~cm}}=40 \mathrm{~cm}$
22. (D) Degree of $\left(x^{2}+1\right)^{3}$ is 6

Degree of $\left(x^{3}+1\right)^{4}$ is 12
$\therefore \quad$ Degree of $\left(x^{2}+1\right)^{3}\left(x^{3}+1\right)^{4}=6+12=18$
23. (C)

$$
x-\frac{1}{x}\left|\begin{array}{c}
x^{2}+\frac{1}{x^{2}} \\
\frac{x^{2}-1}{(-)(+)} \\
1+\frac{1}{x^{2}}
\end{array}\right| x
$$

24. (D) $\sqrt{448}-\sqrt{1008}-\sqrt{567}+\sqrt{700}$
$=\sqrt{64 \times 7}-\sqrt{144 \times 7}-\sqrt{81 \times 7}+\sqrt{100 \times 7}$
$=8 \sqrt{7}-12 \sqrt{70}-9 \sqrt{7}+10 \sqrt{7}$
$=-3 \sqrt{7}$
$=-\sqrt{3 \times 3 \times 7}$
$=-\sqrt{63}$
25. (C) $x^{2}+x(c-b)+(c-a)(a-b)=x^{2}+x(c-$
$a+a-b)+(c-a)(a-b)$
$=x^{2}+x[(c-a)+(a-b)]+(c-a)(c-b)$
$=x^{2}+x(c-a)+x(a-b)+(c-a)(a-b)$
$=x(x+c-a)+(a-b)(x+c-a)$
$=(x+c-a)(x+a-b)$
26. (C) $\operatorname{In} \triangle P S Q Q^{\prime}, P Q Q^{\prime}=2 P S \& \angle P S Q^{\prime}=90^{\circ}$
$\therefore \quad\left(P Q^{\prime}\right)^{2}=P S^{2}+\left(S Q^{\prime}\right)^{2}$
$(2 P S)^{2}=P S^{2}+\left(S Q^{\prime}\right)^{2}$
$\left(S Q^{\prime}\right)^{2}=3\left(P^{2}\right)$
$S Q^{\prime}=\sqrt{3(P S)^{2}}=\sqrt{3} P S$
In $\triangle \mathrm{PSQ}^{\prime}$, the sides ratio
$=$ PS : $\sqrt{3}$ PS : 2 PS
$=1: \sqrt{3}: 2$
Angles ratio $=1: 2: 3=30^{\circ}: 60^{\circ}: 90^{\circ}$
$\angle S P Q^{\prime}=60^{\circ} \angle Q^{\prime} P Q=30^{\circ}$
$\angle Q^{\prime} P X=\frac{\angle Q^{\prime} P Q}{2}=15^{\circ}$
$\angle \mathrm{SP}=60^{\circ}+15^{\circ}=75^{\circ}$
27. (B) Given $x+\frac{1}{x}=5.2=5+0.2=5+\frac{1}{5}$
$\therefore x=5 \Rightarrow x^{3}+\frac{1}{x^{3}}=5^{3}+\frac{1}{5^{3}}$
$=125+\frac{1}{125}=125.008$
(OR)

Given $x+\frac{1}{x}=\frac{52}{10}=\frac{26}{5}$
Cubing on both sides
$\left(x+\frac{1}{x}\right)^{3}=5.2^{3}$
$x^{3}+\frac{1}{x^{3}}+3 x \times \frac{1}{x}\left(x+\frac{1}{x}\right)=140.608$
$x^{3}+\frac{1}{x^{3}}+3(5.2)=140.608$
$x^{3}+\frac{1}{x^{3}}=140.608-15.6=125.008$
28. (D) Const:- Join BD

In $\triangle B C D$ given $B C=C D$
$\angle \mathrm{BDC}=\angle \mathrm{CBD}=\mathrm{a}$
In $\triangle \mathrm{BCD} \mathrm{a}+\mathrm{a}+50^{\circ}=180^{\circ}$
$2 \mathrm{a}=180^{\circ}-50^{\circ}=130^{\circ}$
$a=\frac{130^{\circ}}{2}=65^{\circ}$
$\therefore \quad$ In a cyclic quadrilateral $A B D E, B D C=x$
$\therefore \quad \mathrm{x}=\angle \mathrm{BCDB}=65^{\circ}$
29. (B) $\frac{\sqrt[6]{36}}{\sqrt[3]{3}}=\frac{\sqrt[6]{36}}{\sqrt[6]{3^{2}}}=\sqrt[6]{\frac{36^{4}}{\not 又}}=\sqrt[6]{4}=\sqrt[6]{2^{2}}=\sqrt[3]{2}$
30. (D) In the circle having centre $A, 0$
we have $A C=A B$.
(Since each is equal to the radius of the circle)
In the circle having centre B, we have $B C$ $=A B$.
(Since each is equal to the radius of the circle)
$\therefore \quad$ From (1) and (2), we have $A B=B C=A C$ Hence, $\triangle A B C$ is equilateral.
31. (A, B, C, D) Let $(5 \sqrt{2},-3 \sqrt{3})$ lies on $\sqrt{3} x+\sqrt{2} y$

LHS $=\sqrt{3} \times 5 \sqrt{2}+\sqrt{2} \times(-3 \sqrt{3})$
$=5 \sqrt{6}-3 \sqrt{6}$
$=2 \sqrt{6}=$ R.H.S
Similarly $(0, \sqrt{12}),(\sqrt{8}, 0)$ and $(\sqrt{2}, \sqrt{3})$ also lie on
$\sqrt{3} x+\sqrt{2} y=2 \sqrt{6}$
32. $(B, C) A$ sphere has no flats surface.
33. (A, B, C, D) If ' n ' $(x-1)$ is a factor of
$p(x)=x^{n}-1$
$p(1)=0$
i.e., $1^{n}-1=0$, when ' n ' is a natural number, whole number, integer and prime number.
34. $(B, C) \quad 3(x+2)^{2}+2(x+2)^{2}=48+32$
$5(x+2)^{2}=80$
$(x+2)^{2}=\frac{80}{5}=16$
$x+2= \pm \sqrt{16}$
$x+2= \pm 4$
$x+2=4 \quad$ or $\quad x+2=-4$
$x=2 \quad x=-6$
35. $(B, C) ~ \angle B=\angle A-9^{\circ} ; \angle C=\angle A-72^{\circ}$

But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{A}-9^{\circ}+\angle \mathrm{A}-72^{\circ}=180^{\circ}$
$3 \angle \mathrm{~A}=180^{\circ}+81^{\circ}$
$\angle \mathrm{A}=\frac{261^{\circ}}{3}=87^{\circ}$
$\angle B=\angle A-9^{\circ}=78^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{A}-72^{\circ}$
$\angle C=87^{\circ}-72^{\circ}=15^{\circ}$

REASONING

36. (C) From the option $3^{\text {rd }}$, we get:
$\Rightarrow \quad 10+10 \div 10-10 \times 10=10$
$\Rightarrow \quad 10 \times 10 \div 10-10+10=10$
$\Rightarrow \quad 10-10+10=10$.
Hence, the option C is correct.
37. (C)

38. (C) The four squares each of the two layers in between i.e., 8 cubes have no face coloured.

39. (B) From the first sentence it is clear that A is brother of K. Hence option (B) is not true.
40. (B) First letter represents $=$
 Second letter represents upper part =

41. (A) Change the Roman numberals into modern numbers;

208104 (CIV) 5226 (XXVI)
Each one is half the previous number, therefore the next number is 13 , expressed in modern numerals to conform with the established pattern.
42. (D) No. of individual triangles $=16$

No. of triangles formed by combinations
$=1+2,11+12,15+16,5+6$,
$11+13+15,12+14+16$,
$A B C$ and $A C D$
$\therefore \quad$ Total number of triangles $=16+8=24$
43. (D) Cubes of consecutive numbers 1009 is not a cube of 10 .
44. (D)

Hence he should go in south east direction.
45. (B) The fill changes from white to lattice. The sides of the enclosed shape double in number. The shape is enclosed by a circle with a grey fill.

CRITICAL THINKING

46. (C) Potential energy is slowly converted into Kinetic energy during the free fall of an objects.
After it has falen at energy get equally distributed.
47. (C) Each of the squares moves anticlockwise, first one position, then two, then three and so on.
48. (D) Splitting the diagram in half both horizontally and vertically, each quarter contains a pattern of black squares, representing the letters $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z .

49. (B) Only argument II is strong.

For the all-round progress of the nation, all the students, especial the talented and intelligent ones, must avail of higher education, even if the government has to pay for it. So, only argument II holds.
50. (D) In the below image, I had numbered the order of drawing continuous lines (you can have another order also)

(iii)

(iv)

